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Abstract

Design of distributed shared memory (DSM) computers liberates user from the duty to

distribute data across processors and allows incrementally develop parallel programs using,

for example, OpenMP or Java threads. DSM architecure greatly simplifies development

of parallel programs having good performance on a few processors. However, to achieve

a good program scalability on DSM computers requires from the user to understand data

flow in the application and use various techniques to avoid data traffic congestions. In this

paper we discuss a number of such techniques, including data blocking, data placement,

data transposition and page size control and evaluate their efficiency on the NAS Parallel

Benchmarks. We also present a tool which automates detection the constructs causing data

congestions in Fortran array oriented codes and advises the user on code transformations for

improving data traffic in the application.

1 Significance of Data Traffic Control

There are very few explicit programming constructs which allow to express data location

in the computer memory 2. As a result, the data location depends on the compiler and

OS and the time for accessing data varies with the computer architecture and the user has

to reconsider performance of his code on a machine with new architecture. The simple

traps in memory access such as cache trashing and false sharing are not difficult to identify

and to avoid with array dimensions padding and variables privatization. The other data

traffic problems such as poor data locality, excessive TLB misses and thread interference

are difficult to diagnose and cure. Many programming constructs looking similar may have

factor 3-4 difference in performance. Even the best implementations of CFD codes achieve

only about 20% of peak performance of the machine it runs on (see [13]), spending 80% of

time accessing data.

Several factors contribute to low efficiency of CFD codes. First, the balance of the number

of floating point operations does not allow to provide an optimal mixture of instructions to

keep all functional units busy. Second, and a larger factor comes from the fact that the many

operations are stalled during computation waiting for data, see Example 1 in Section 2 and
Table 1.

Approach to data tra_c optimization. The first step in addressing this challenge is'to

detect the code constructs suffering from data congestions and identify the data congestion
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type causing loss of the performance. We use four congestion metrics in this paper: Pri-

mary Data Cache (PDC) misses, Secondary Cache (SC) misses, Translation Lookaside Buffer

(TLB) misses, and Cache Invalidations (CI). The second step is to choose a proper remedy

to resolve congestions and apply them to the code. This remedy can be either code trans-

formation, or changing program environment such as page size or page placement/migration

mechanisms.

Methods for controlling data traj_c. In a number of publications these problems have

been addressed [4, 9, 10] and a few techniques have been developed to improve data traffic.

These techniques include data grouping for cache optimization, optimization of the page size

for reduction of TLB misses, placement of pages to resolve contention in memory channel

and data transposition for reduction of cache invalidations and TLB misses. Even with

these techniques in hand it is not easy for nonexpert in the target computer architecture to

identify where and how the appropriate transformations should be applyed. For example, it is

known for some time that computations of rhsz and zsolve in BT and SP of NAS Parallel

Benchmarks (OpenMP version) have factor of 3-4 worse performance then corresponding

operators in x-direction, cf. [7]. Neither reason for this nor way for fixing the problem

have been known so far in spite of that NPB de facto are standard codes for reporting

improvements in compilers and tools [11].

Many optimizations to improve data traffic are implemented in the compilers for the

target architecture. These optimizations include nest level optimizations such as loop inter-

change, loop fusion, software pipelining, prefetching and others. On the data level compilers

usually use padding and privatization. Compilers, however, cannot perform deep code anal-

ysis such as full interprocedural or dependency analysis. Many types of analysis are not

possible at compile time at all.

Another approach to identify data traffic problems relies on using hardware counters

which allow to collect statistics of events during execution of a program construct. Some

tools for collecting and analyzing the events, including perfex and Perforrneter have been

built on the top of these counters [6, 12]. These tools allow to instrument the code and

identify the code constructs with anomalies. However these tools are diagnostic in nature

and leave analysis of the problems and searching ways to resolve them to the user.

In this paper we present a tool which identifies data traffic problems and suggests solutions

for resolving them. This tool analyses data-to-data affinity and data-to-computations affinity

in the code and informs the user about possible problems with the data traffic. The data

control statements which can not be evaluated at the compile time the tool inserts in the

code. These statements are evaluated and the user receives warnings.about poor performing

code constructs at run time.

We demonstrate the tool's ability to identify problematic data traffic constructs and to

suggest a cure of the performance problems on three simulated CFD applications BT, SP

and LU of NAS Parallel Benchmarks. The tool was able to resolve data traffic problems

with rhsz and zsolve operators and helped to improve performance of the codes by 27% in

average.



2 Automaton of Detection of Data Traffic Problems

For controlling data traffic the user has to have information on data movement across com-

puter memory hierarchy in his application. Details of such movement can be complicated

and machine-dependent and may require expertise in the target computer architecture. In

many cases however data movement can be formulated in terms of cache parameters, array

offsets, and data access strides and characterized by simple metrics such as cache misses and

cache invalidations. In a few cases, such as accessing shared data, the data traffic depends

on cache coherency protocol and is sensitive to the variations in the order of the execution

of statements by different threads.

The requirements to the user awareness of the specifics of the computer architecture could

be greately reduced with a help of a tool detecting data traffic congestions and advising ways

to resolve them. Such a tool can advise on data grouping for avoiding data streaming through

the processor by increasing data reuse, on initial data placement for avoiding contention in

the memory access, on choosing an optimal page size for reducing the number of TLB misses

and on reducing thread interference caused by cache coherence issues.

The typical problem with the code which tool intended to advise is shown in the following

example.

Example 1. The first two nests in zsolve of SP from NAS Parallel Benchmarks (serial

version) are shown in Figure 1, left pane. The optimization of the computations in the first

nested loop actua!ly slows down computations since it touckes a large number of memory

pages and has a poor utilization of primary cache, see lhsz curve in Figure 2. Merging

the first and the second nested loops and recalculation of the expressions, see Figure 1,

right pane, decreases the number of pages accessed, improves cache utilization, and the total

execution time in spite of increase in the total number of floating point instructions, see

Figure 2 lhsz_t curve.

We have implemented such a tool by adding features to ADAPT (Automatic Data Align-

ment and Placement Tool), see [2]. Originally ADAPT was designed for automatic anno-

tating FORTRAN code with HPF directives a. The tool is able to identify data-to-data

and to data-to-computations affinity and express the affinities through HPF ALIGN and

DISTRUBUTE directives. The ability of the tool to extract data-to-data affinity and data-

to-computations affinity is the key for enabling it with automatic data traffic control capa-
bilities.

Data-to-data affinity. Two data are affine if both are used at the same instruction exe-

cuted during the program run. For a pair of arrays used in the same !oop nest statement the

affinity relation is a correspondence between array elements referred with the same value of

the loop index. Grouping affine data items together and organizing groups into a continuous

stream often improve the program performance by hiding the memory latency. In general,

the affinity relation is a many-to-many relation and there are many ways to group affine

data items. In [3] it is shown that the possibility of grouping affine array elements depends

on the geometry of the self interference lattice of the array that is a set of solutions of the

Cache Miss Equation [4].

aADAPT is built on the top of CAPTools [8]. It uses a CAPTools generated data base, CAPTools code
analysis and some CAPTools utilities.



lhsz

do j=l,ny

do i=l ,nx

do k=l ,nz

cv(k)=ws (i,j,k)

rhon (k) =SFunct ion (rho (i, ], k) )

end do

do k=l ,nz

lhs(i,j,k, 1)=O.OdO

lhs (i ,j ,k, 2) =-dttz2*cv (k-l)

-dttzl*rhon(k-l)

lhs(i,j,k,3)= l.OdO

+c2dttzl*rhon (k)

lhs(i,j,k,4)= dttz2*cv(k+l)

-dttzl*rhon (k+ i)

lhs(i,j ,k,5)=O.OdO

end do

end do

end do

lhsz_t

do k=l,nz

do j=l,ny

do i=l,nx

lhs(i,j,k,l)=O.OdO

lhs(i,j,k,2)=-dttz2*ws(i,j,k-l)

-dttz1*SFunction(rho(i,j,k-l))

lhs(i,j,k,3)=1.0dO

+c2dttzl*SFunction(rho(i,j,k))

lhs(i,j,k,4)=dttz2*ws(i,j,k+l)

-dttzl*SFunction(rho(i,j,k+l)

lhs(i,j,k,5)=O.OdO

end do

end do

end do

Figure 1: Data Traffic Optimization. Original code (left) taken from lhsz.f of NPB2.3-

serial, saves few floating point instructions used in SFunction. Such loop ordering crea_es

a large number of TLB misses since calculations scan through many memory pages and a

large number of PDC misses since it uses only one word per cache line. By rearranging

computations (right pane) this problems are resolved improving execution time in spite of

increase in number of FPI. The profiles of both codes are shown in Figure 2.

The affinity relation can be deduced for each pair of arrays in each nest statement. A

control dependence results in affinity relations between the arrays involved in the control

statement and all arrays in the basic blocks immediately dominated by the statement. The

most common case we observe in CFD applications is one-to-many affinity relations between

arrays resulted from difference operators on structured discretization grids. These relations

can be approximated by a stencil (i.e. by a set of vectors with constant elements) and we call

them stencil relations. In order to deduce the affinity for arrays used in different statements

of the same nest ADAPT uses the chain rule, see [2]. The chain rule allows to propagate an

affinity relation along each directed path in the nest data flow graph. The union of these

relations over all directed paths leading to an array q from an array u forms the nest affinity

relation between q and u. The relation lists all elements of u used for computation of each

element of q and is one-to-many mapping.

Data-to-computations affinity. We represent program by a bipartite graph called program

affinity graph. Let C be the set of program statements, and let D be the program data, i.e.

the set of memory locations referenced in the program. We say a memory location d is affine

to a statement c if the datum at address d is either operand or result of c. The program

affinity graph has C and D as the vertices of the parts and an arc connecting each statement

with data affine to it. Many program properties can be expressed in terms of the affinity
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Cycles Time Flal TLB PDC SC Cl

Figure 2: The effect of TLB (Table Lookaside Buffer) and PDC (Primary Data Cache)

optimization on the performance of lhsz nest. The performance of lhsx nest is given as

a reference. The horizontal axis shows different types of events measured with the use of

hardware counters. The vertical axis shows a normalized number of measured events. Here

FPI stands for Floating Point Instructions, SC stands for Secondary Cache misses, and CI

stands for the secondary Cache Invalidations.

graph. For example, a statement c2 depends on a statement cl if there is a direct path from

cl to c2. Otherwise, cl and c2 are independent and can be executed in any order.

The analysis of the affinity graph can be simplified by indexing the statements inside

the nests and the memory locations used by the arrays. In this case the arcs connecting

data and statements can be expressed as a pair of expressions (I; idx(I)) where I is a vector

loop index and idx(I) is a memory address of an array element referenced at iteration I.

In most of the cases in our application domain (CFD applications on structured grids) the

index function is linear function of I with symbolic coefficients known at compile time. The

are few nests in our applications where this is not a case. These nests include the core of

the FFT algorithm where the idx(i, j, k) = i + 2 • j • k for kji loop nest; nests working with

multiple grids where idx function is read from a file; nests working with specially enumerated

grid points use idx function stored in a precomputed array. The tool indicates the nests

with nonlinear access functions without any further analysis of the nests at this point. In

most nests with the linear access function the coefficients of the matrix representing the idx

function are elements of the set {-1,0,1}, with an exclusion of the multigrid methods where

the coefficients are multiple of 2.

Some properties of the data traffic can be deduced using only symbolic information on the

coefficients of ±dx function (see the thread noninterference condition below) others require

knowledge of the actual numerical values of the coefficients (see the subsection on generation

of interference free tiles). If the property of the data traffic can be expressed in a symbolic

form but can not be verified without knowing the numerical values of the coefficients the

tool inserts the expression in the code and the user obtains the warning at run time. We

call such test run time test.

Checking cache unfriendly access patterns. In general, cache friendly computations in-

volve good temporal and spatial locality [5] and can not be expressed in simple terms [4].

However, some necessary conditions for cache friendly computations can be formulated and



checked.The first condition is simple: the coefficient at the innermost loop index is 1. Oth-
erwise, nonunit stride in memory accesscan cause,underutilization of data loaded into the
cache. The other two conditions, self and cross array interference are formulated below.

Detection of self interference. If the self affinity relation is a stencil relation the tool

represents the addresses of the corresponding array elements as a polylinear functions of

array sizes and the index coefficients. Then for each pair of the stencil vectors it generates

a set of constraints for the array dimensions in the form nx • ny 7_ k • S, where nx, ny are

the array sizes, S is a cache size and k is a small integer. If neither nx nor ny is known at

compile time a test for a satisfiability of these constraints is inserted into a program as a run

time test.

Detection of cross interference. The cross interference between two arrays happens when

affine elements are mapped to the same cache location. The detection of the cross interference

is similar to the detection of self interference with a difference that it involves the inter array

offset and dimensions of both arrays. The cross interference constraints are represented by

a polylinear inequality: nxa • nya + nxb • nyb + off_a_b -¢- k • S, k = 1, 2, 3. An evaluation

of this inequality requires knowledge of off_a_b and can be done, for example, if both arrays

are in the same common block or are redimensioned areas of the same bigger array.

Detection of high TLB misses. Large number of TLB misses (as in Example 1) usually

results from large memory stride due to iterations of the innermost loop of a nest. Our TLB

miss test checks two conditions: 1. the number of iterations of the innermost nest exceeds

the TLB_SIZE; 2. the distance between the first an last address accessed in the innermost

loop exceeds the PAGE_SIZE*TLB_SIZE. If both conditions can be proved to be true then

the user gets a warning about high TLB misses in the nest. Otherwise, if both conditions

can not be proved to be false then the tool inserts a run time test.

Checking thread noninterference. This condition can be formulated as nonoverlapping of

the address spaces accessed by different threads 4. If the noninterference condition is satisfied

then the memory accessed by a thread can be placed at the memory of the processor running

the thread, improving data locality. This condition is checked only for "read/write" arrays

since thread interference would cause cache lines invalidations. In the case of "read" array

this condition is not checked since read arrays are copied into secondary cache anyway and
one thread do not affect others.

Consider a single nest of a parallel program and assume that the parallelized loop (k-loop

in this case) is known. Let an array access function be a linear function of the nest indices

i, j, k with symbolic coefficients a, b, c:

addrp(i,j, k) = ai + bj + ck + cwp

where p is the thread number, w is the number of the loop iterations per thread, 0 < i <

nx, O < j < ny, O <_ k < w,O < p < P, P is the number of threads. Then the necessary and

sufficient condition for thread noninterference simply is

c > a(nx- 1) + b(ny- 1).

4That is if a thread accesses array elements at addresses A and B then no other thread accesses an array
element at address C, if A < C <_B.



If there are multiple array access functions per array then the tool checks the noninterference

condition for each function. This, however, is not sufficient for complete thread noninterfer-

ence, for example. If the access functions differ by a constant term (independent on i, j, k)

the threads have small interference.

Interference of threads depends on the data sharing protocol implemented in the DSM

computer. For example, if data coherence is supported on the level of secondary cache

lines, as in the Origin 2000, then read/write interference can happen even if two threads are

accessing two different words of the same cache line. For a tool it is possible to be aware of

the data sharing protocol and adjust CI estimates accordingly. We have implemented a more

general approach: for each nest and each thread the tool evaluates an interference indicator

as a ratio of the number of memory locations adjacent to the memory locations accessed by

other threads to the total number of memory locations accessed by a the thread. For example,

in Figure 1 the interference ratio for lhs is P/nx • ny in lshz and P/nx • ny • nz in lshz_t,

which correlates well with the CI number in Figure 2. This interference indicator is similar

to "surface-to-volume" ratio used to estimate cache utilization, and to communications-to-

computations ratio in MPI programs.

Detection of the data sources and the initial data placement. The page placement on a

DSM computer commonly is controlled by one of simple policies such as "First Touch" or

"Round Robin". More sophisticated page placements can be implemented with special tools

such as dplace (see [12]). Incorrect initial data placement, for example, concentration of

data at a single pro,:esscr, (:an cause mem3ry contention at the execution time and hamper

the application scalability. By this reason we enabled the tool by an ability to detect data

initialization constructs in the code. We found that all data initialization constructs in our

codes have one of following types:

• reading data from a file

• initialization of arrays from another array

• initialization of an array with an intrinsic function

These constructs are easily detectable by our tool and a data placement directive (in the

form of HPF ALIGN, DISTRIBUTE directives) is issued before each construct.

3 Experiments

As experimental platform we used an SGI Origin 2000 installed at NASA Ames Research

Center. We conducted experiments on 16 processors of 512 node 400 MHz machine. We sub-

mitted jobs through the Portable Batch System (PBS) which dedic/_tes requested resources

to the job and minimizes it interference with other jobs running on the machine. The ex-

ecution time variation between runs was within 1% indicating that PBS provided a good

isolation from other jobs and a consistent mapping of the application onto the machine. We

used 16 processors since this is the minimal number of processors where the slowdown due to

memory traffic effects was well pronounced for the the 643 grids of NPB class A. The effects

are similar up to 32 processors, after which the parallelization limits become dominant.

The primary memory hierarchy on Origin 2000 involves 4 levels: registers, primary data

and instruction caches, secondary unified data and instruction cache, and the main memory.

The access time to data located on different levels of memory is shown in Table 1, cf. [12].
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The primary cacheis 2-way associativehaving 512 lines of 32 bytes long in each set. The

Table 1: AccessTime (in machinecycles) to
Data Location AccessTime

registers 0
L1 cache 2-3
L1 cache 8-10
L2 cache 75-250

L2 cache ,-,.,2000

Data in Origin 2000K Memory.

Condition

L1 hit

L1 miss, L2 hit

L2 miss, TLB hit

L2 miss, TLB miss

secondary cache is shared by data and instructions and it is also 2-way associative having

32K 128 bytes long lines. The main memory is split in chunks of 512 MB between nodes

(2 processors per node) totaling 128 GB of memory on 512 processor machine. TLB has 64

entires containing base addresses of 64 pairs of pages.

The cache coherency protocol guarantees that data accessed by different processors do not

stale. The protocol invalidates a line in secondary cache every time any processor requests

an exclusive ownership (usually for writing) of data mapped to the line. In this case all

copies in all other processors are invalidated and each processor working with this line has

to request a fresh copy of the line to resume computt+tior, s. An obvious implicatior of this

protocol is that it will t'ause significant slowdown if two plocessors would attempt _c write

data located within the same 128 byte segment of main memory.

As the test codes we chose OpenMP version of PBN3.0-b2 a release of NAS Parallel

Benchmarks which includes optimized serial, OpenMP, HPF and Java versions of the bench-

marks. PBN (which stands for Programming Baseline for NPB) is designed for demonstrating

capabilities of the compilers and tools working with CFD codes [1].

Me measured execution time of various levels of optimized programs. Since we used -03

flag to the compiler then in many cases a special effort required to prevent the compiler

from undoing our optimizations. We provided flags for compiler for suppressing prefetch-

ing: --LN0:prefetch=0 to obtain an accurate numbers for the harware counters, and flag

0PTFLAGS=-0PT:reorg_common=0FF to enforce our own padding of arrays declared on the

common blocks.

4 Experimental Results and Discussion

We applied the tool to SP, BT and LU of NAS Parallel Benchmarks [4] (optimized OpenMP

version PBN-O). For each benchmark the tool was able to generate the following data traffic

optimization diagnostics.

• Nests for initial data placements. The toot detected all nests where data were initialized.

In all cases the arrays were initialized from array of smaller dimensions (or constants). The

initial data placement was appropriately implemented in the original code and we did not

do any relevant changes.

• Nests with nonunit strides and advise on loop interchange. Such nests were detected

only in calculation of the right hand side array by the subroutines rhs, exact_rhs, and erhs.



• Nests with big strides and advise on loop interchange and data transpositions. Nests

with big strides were detected in the subroutines rhs, exact_rhs, erhs and in zsolve.

An advise on interchanging jik to kji loops were issued for the first three subroutines. In

zsolve a dependency in k index did not allow to parallelize the loop on k and make a loop

interchange.

• Nests with self or cross interference, and advises on padding. No arrays with self

interference were detected (the existing paddings of the second and third dimensions were

sufficient). The cross interference condition was presented in the form that the array offsets

can not be equal to a multiple of cache size plus a stencil vector offset.

Following the tool advice we implemented by hand a number of changes in original

OpenMP code. Almost all changes were performed in rhs, zsolve, buts, and bits subrou-

tines. We classify these changes into 3 categories as shown in Table 2: removing auxiliary

arrays and nest fusion in rhs, loop interchange in rhs, removing auxiliary arrays in solvers:

zsolve in BT and SP and buts, bits in LU.

Both exact_rhs and erhs were outside of the main iteration loop so we did not do any

changes in these subroutines. An incremental improvement in performance via data traffic

optimization for each benchmark is tabulated in Table 2. The total improvement was about

of factor of 3 for rhs and 20% for zsolve resulting in overall speedup about 27% on 16

processors.

Table 2: improving Benchmark Performance via Data "Traffic Opt_mzzation. Time (in se:c-

onds) was measured on 16 processors cf 400MHz ©rigin 2000 machine.

Appli- Original Data reuse Nest Removing Total

cation Code and nest fuse interchange aux. arrys speedup

BT.A 54.00 51.44 44.22 42.12 22%

SP.A 63.40 55.89 38.70 37.92 40%

LU.A 59.35 52.19 48.95 48.78 18%

Some optimizations, which give performance improvements in simple test codes did not

result in expected improvements in the benchmarks.

• Optimizing page size by providing each processor with one page from each array, did not

effect performance of the jobs running under PBS. It improved performance of jobs running

outside PBS by 10%.

• We could not find a remedy for thread interference warning (high CI number) in zsolve.

The nest had dependency in z-direction, preventing us from loop interchange. The other

option, array transposition, itself involves an interference which has CI number comparable

with that of the original code.

5 Conclusions and Related Work

We presented a tool for automatic analysis of data traffic problems in array oriented For-

tran codes. The tool advises the user on excessive cache and TLB misses, possible thread

interference and suggests the code transformations for improving data traffic. Some of the



transformations are contraintuitive since they reducedata traffic and overall computational
time by increasingof the number of floating point instructions.

We showedefficiency of the data traffic improvementson example of three simulated
CFD applicationsBT, SP and LU from NAS Parallel Benchmarksuit. For somesubroutines
working in z-direction the transformations have improved performance by factor of 3 and

changed scalability of these subroutines. Overall data traffic optimizations improved the

benchmark performance over 27% in average on 16 processors.

Potentially, ADAPT can provide information about filling of the secondary cache after

each nest. This information can be used for further improvement of the application perfor-

mance by a seamless reusing data in the secondary cache between nests and subroutines. We

have plans to implement this and some other global data traffic control features in ADAPT

and as well as to test it on a wider class of CFD applications.

Research on data traffic control is actively performed in three main directions: reducing

communications in MPI programs see [8], optimizing data distributions in HPF programs,

see a survey in I2] and improving spatial and temporal data locality for optimizing cache

performance [4]. With proliferation of DSM architecture (4 processor DSM may often be

spotted at engineers desks) and of OpenMP standard the data traffic control on DSM moves

into focus of this research. Some problems of data distributions and page migrations on

DSM are subject of recent papers [9, 10]. We expect that with growing depth of computer

memory hierarchy and memory-to-processor gap the optimization of the data traffic control

will be essentia_ component, of program development for DSM architectures.
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